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Abstract— Improvement of the performance/cost ra-
tio for modern microwave filters requires manufacturing-
oriented design, hence accommodating full-wave toler-
ance analyses and yield optimization which are very
computer-insensive.

The use of neural networks for reducing the design effort
of microwave filters, although still in its infancy, seems
to provide a rather promising option. Once properly se-
lected and trained, neural networks can approximate the
filter response at a very modest fraction of the computer
resources used by the full-wave rigorous model, hence en-
abling systematic application of manufacturing-oriented
design.

In this contribution we present the solution of the major
important choices related to the effective selection of a
neural network suitable for approximating the behavior
of a typical microwave filter. For illustration we consider
the example of a standard four-pole E-plane metal-insert
filter operating in X-band.

I. INTRODUCTION

HE current trend in the design of microwave filters
is to achieve the goal of yield optimization, i.e. to
maximize the number of filters which satisfy a defined
acceptance criteria with respect to the total number of
filters produced. This means that the designer has to
optimize not only the “ideal” filter, i.e. the one with the
theoretical geometrical dimensions, but the optimiza-
tion is to be carried out considering an entire statistic
of the possible outputs of a given manufacturing process.
Needless to say, yield optimization requires a consider-
able effort and is only feasible at a computer level.
Depending on the selected implementation, filters
may be realized on different waveguiding structures:
microstrip lines, coplanar waveguides, slotlines, hollow
metallic waveguides, dielectric waveguides and several
other types of transmission lines [1, Chap. 1]. More-
over, a filter may present a rather simple geometry, or
it may require the use of tuning screws or other devices
which make the structure a fairly complex one. As a
result electromagnetic tools are necessary for the EM
rigorous filter analysis.
Unfortunately, to perform yicld optimization by us-
ing clectromagnetic packages such as FEM or FDTD

does not appear feasible and even when using very ef-
ficient modal analysis it has been found convenient to
employ sophisticated techniques, like the adjoint net-
work method [2], [3], in order to expedite computations.
Recently, the introduction of Space Mapping has allevi-
ated the problem [4].

However, cven space mapping still makes use of
computer-intensive EM full-wave simulators.  DBut cs-
sentially, what we really need is a tool which relates the
geometrical dimensions (input) to the filter frequency re-
spouse (output). A neural network seems to be an ideal
candidate for such a task. In fact, it has been shown
that after proper training, a ncural model can define
any nonlinear mapping between an input and an out-
put vector spaces. In our application we can associate
the geometrical dimensions (input) to the filter response
(output) with a very modest numerical effort. In order
to obtain such a result a proper model for the ncural
network has to be selected, possibly tailored on the par-
ticular component that we are modeling (i.c. the filter).

Previous investigations and applications of neural net-
works for microwave applications have not considered in
detail filters examples [5]. The specificity of the filter
response calls for an appropriate neural network archi-
tecture: the individuation of such a network, and its
behavior, is the topic of the present work.

II. NEURAL NETWORKS: A BRIEF DESCRIPTION

Neural networks can help to further the understand-
ing of brain functions: engineers are, however, mostly
interested in understanding how neural networks com-
pare with different processing techniques for problem
solving. Neural networks, because of their massively
parallel structure, can perform computations at a very
high rate if implemented on a dedicated hardware; be-
cause of their adaptive nature, they can learn the char-
acteristics of input signals and adapt to changes in the
data; because of their non linear nature they can per-
form functional approximation and signal filtering oper-
ations which are beyond optimal linear techniques. This
latter aspect was the starting point for the present work:
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our objective is to define an approximator of the non lin-
ear functional between the geometrical dimensions of the
waveguide filter considered and its frequency response in
the neighborhood of the point obtained from the direct
application of a synthesis procedure. The ability of neu-
ral networks to define non linear models is expected to
yield an accurate model in a dynamic range of the ge-
ometric parameters wider than the one allowed by the
usual linear methods.

A. Feedforward layered networks and error back propa-
gation

Typically feedforward layered networks consist of a set
of source nodes which constitute the input layer, one or
more hidden layers of computation nodes and an out-
put layer of computation nodes. Each processing node
(neuron) performs a sum of the signal components at
its input; this sum is thus fed into a block performing a
differentiable non linear processing (usually a sigmoidal
logistic function) of the type

1

0= et

()
The input signal propagates through the network in a
forward direction, on a layer-by-layer basis. These net-
works are usually referred to as multilayer perceptrons
(MLPs). The processing task to be performed is de-
scribed by a set of input-output data (the training set):
the network is specialized to solve this task by modi-
fying its parameters by means of an iterative optimiza-
tion procedure (the learning procedure): the error back
propagation, described in [6], is a highly popular learn-
ing algorithm. It basically consists, at each iteration, of
two passes through the different layers of the network: a
forward pass and a backward pass. In the forward pass
an input pattern is applied to the input nodes and its ef-
fect propagates through the layers of the network: a set
of outputs is produced (the actual respouse of the net-
work at that stage). The actual response is subtracted
from the desired (target) respouse to produce an error
signal which is propagated backward through the net-
work (the backward pass). Iu this phase the parameters
of the network are adjusted following a gradient descent
procedure.

ITII. FUNCTION APPROXIMATION BY LEARNING

Approximation theory deals with the problem of ap-
proximating or interpolating a continuous, multivari-
ate function f(z) by an approximating function F'(w, x)
having a fixed number of parameters w belonging to
some sct P. For a choice of a specific F, the problem
is then to find the set of parameters W that provides
the best possible approximation for f on the set of the
available “examples” (learning step). It is fundamental

to choosc an approximating function F that can repre-
sent f as well as possible. The problem of learning a
mapping between an input an output space is equiva-
lent to the problem of estimating the system that trans-
forms inputs into outputs given a set of examples of
input-output pairs (supervised learning).

The problem of approximating a function of scveral
variables by MLPs has been studied by many authors:
[7], [8], claim that a three layer feedforward layered net-
works with sigmoid units in the hidden layer can approx-
imate continuous or other kinds of functions defined on
compact scts in R™. Their results can be summarized as
follows (universal approximation theorem): Let ¢(.) be
a mon constant, bounded and monotone-increasing con-
tinuous function. Let £, denote the p-dimensional unit
hyper cube [0,1]P. The space of continuous functions
on £, is denoted by C(£,). Then, given any function
f e C(¥,) and € > 0, there exist an integer M and sets
of real constants «v;,6;, and w;; , where i = 1,..., M

and j=1,...,p such that we may define
M P
F(xy,ma,...,2p) = Z()zq-,(é Z“}iﬂ'j —0; (2)
i=1 j=1

as an approximate realization of the function f(.); that
18

|Fx1,20,...,2p) — f(z1,20,...,2))] <€ (3)
Jorall{x1,29,...,2,} € £,. This theorem is directly ap-
plicable to MLPs: we first note that the logistic function
is a non constant, bounded and monotone-increasing
continuous function; it therefore satisfies the conditions
imposed on ¢(.). Then we note that (2) represents the
output of a MLP consisting of p input nodes and a sin-
gle hidden layer of M neurons with thresholds 6;, and
input-to-hidden weights w;; ; the output neuron is a lin-
ear one and the hidden-to-output weights «; define the
coefficients of the combination.

A. Practical application of the universal approximation
theorem

Several fundamental questions must be addressed in
order to make a practical use of MPLs as approximators.
A first question is the following: how many samples are
needed to achieve a given degree of accuracy? It is well
known that the answer depends on the dimensionality d
of the data space and on the degree of smoothness p of
the class of functions that has to be approximated [9].

Other fundamental questions are related to both the
learning strategy and neural network topological struc-
ture. The universal approximation theorem is infact an
existence one: it states that a single layer network is
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Fig. 1. Geometry of the E-plane metal-insert filter

sufficient for a MLP to compute a uniform e approxi-
mation to a given training set represented by the input
output couples {x1,2a,...,2,} and f(x1,29,...,2,).
The problem of model complexity selection arises in
all parametric modeling techniques: it has been ap-
proached in the technical literature by using statistical
identification procedures, as for instance the AIC [10] or
the MDL [11]; in the specific case of neural models, the
use of the above criteria, or their extensions, has been

proposed [12], [13], [14].

IV. APPLICATION: LEARNING THE E-PLANE
METAL-INSERT FILTER NEURAL MODEL

The artificial neural technique has been applied to the
simulation of a typical waveguide filter with the goal
of obtaining a reliable, accurate, and fast description
of the filter electrical response in presence of tolerance
errors due to the manufacturing process. For sake of
definitess we have selected as an example the E-plane
metal-insert waveguide filter shown in Fig. 1. The rel-
ative geometrical parameters are the septa lengths and
spacing and the waveguide width, resulting in a total
number of 11 geometrical parameters; together with the
frequency band they represent the input to the neural
network; the output being the return loss, s11, computed
on the frequency band of interest.

The different input components of each pattern are
associated to the geometrical dimensions of the filter
under consideration. Their values have been scaled to
the same dynamical range ( -10,10 in our experiments)
to ensure that the neural model assigns the same rel-
evance to the different geometrical dimensions. After
training phase, the neural model approximates the re-
turn loss with respect to its theoretical behaviour. We
denote these deviations as ”approximation error”. It is
interesting to represent this quantity in the frequency
band of interest by considering its mean and standard
deviation as obtained by considering a fairly large set
of 65 filter responses. A typical response for the filter
considered is illustrated in Fig. 2; it is apparent that the
error becomes fairly large at certain frequencies. How-
ever, it turns out that the approximation error is partic-
ularly severe just at the nominal filter resonances. This
is quite natural because even a modest change in the

geometrical dimensions causes a slight shift in the res-
onance which, in turn, generates a severe error in the
actual value. However, for practical purposes this type
of crror is not particularly relevant. Based on this ob-
servation, after our early experiments, we modified the
learning procedure in order to improve the approxima-
tion accuracy in the range of interest. Fig. 2 refers to the
results obtained in this way: namely, the MLP imple-
ments a non lincar compression/decompression during
the training phase. The choice of neural model’s topol-
ogy has been performed by using the AIC procedure, as
proposed in [13], [14]. The AIC procedure, and cxaus-
tive experiments, have shown that a topology consisting
of 50 ncurons in the hidden layer (15,50,1) is capable of
providing fairly good results with a relatively modest nu-
merical effort. The training set has been defined by as-
suming as nominal manufacturing tolerance 10 microns,
and we have trained the network with a training set
of 65 filter responses sampled in 300 frequency points.
The training set has been produced as a random gaus-
sian distribution of filter geometrical parameters around
the nominal design with a standard deviation of 40 mi-
crons, considering in such a way the case of very large
manufacturing errors. The number of filter curves con-
sidered for training purposes has been defined by taking
into account the number of free parameters in the neural
model. A number of 65 filter responses sampled in 300
frequency points, proved to give a sufficient description
of the mapping while allowing a reasonable computa-
tional effort (2 hour on a PC pentium 200 MHz). After
the learning phase the trained network gives its response
in a few milliseconds, and allows to approximate any fil-
ter response in the range of geometrical values we con-
sidered (40 microns for each dimension, four times the
nominal tolerances). To give an idea of the generaliza-
tion ability allowed by the trained network, fig. 3 allows
a comparison between the responses obtained by using a
fullwave analysis and the neural model; it is worth not-
ing that these filters were not considered in the training
set of the neural model. It is moreover apparent that
the neural network response is reliable and accurate even
for the frequency points corresponding to the zeroes of
the reflection coefficient. The computational cost asso-
ciated to the modal analysis procedure is over 100 times
more expensive that the one associated to the neural
model. This clarifies why the use of a neural model can
be particularly well suited for an intensively repetitive
procedure.

V. CONCLUSIONS

A neural model of an E-plane metal insert filter has
been defined which takes into account manufacturing
errors. A suitable procedure has been defined to select
neural model’s topological complexity and the number
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Fig. 2. Manufacturing errors change the return loss with respect
to the theoretical one; these deviations are synthetically rep-
resented by the mean and relative standard deviation.

of samples required to ensure an accurate description of
filter response, even in the presence of very large man-
ufacturing errors. The results we reported in the paper
show that our procedure meets the original requirements
posed by means of a model whose recursive computa-
tional cost, after the learning phase, is about two orders
of magnitude lower than the one associated to a full wave
model analysis: this aspect makes the neural modelling
approximation procedure an interesting candidate for
repetitive on line controls. Other relevant perspectives
are opened by the availability of a flexible and accurate
model of the filter: we are currently exploring a num-
ber of these aspects, and namely (1) a further improve-
ment of neural model accuracy by means of a prelimi-
nary neural clusterization of filter curves typology; (2)
the automatic estimate of filter response sensitivity to
geometrical dimensions inaccuracies, in order to obtain
information about the manufacturing accuracy neceded
for each geometrical dimension in order to maintain the
overall filter response within a desired tolerance; (3) in-
verting the neural model in order to obtain a new set of
"nominal” geometrical dimensions which take into ac-
count manufacturing tolerances.
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